The Cooling Problem in a Very High-Power Electrical Transformer: Contribution to Heat Flow and Transfer Predictions in Innovative Technologies

Author's Information:

Emanuel Eduardo Pires Vaz

Plant engineer, professor of applied mathematics by FEUP, IEEE, NYAS.

Vol 02 No 11 (2025):Volume 02 Issue 11 November 2025

Page No.: 694-709

Abstract:

This article provides an overview of the current state of knowledge regarding heat transfer technology in high and very high power transformers, focusing on transformer cooling, heat dissipation without insulation deterioration, and the calculation of temperatures for the hottest points of the winding. It also discusses the rotation of the heat flux field, which induces additional forces that alter the heat transfer pattern of the wall channel, causing secondary radial fluxes with high temperature gradients. Erosion of ceramic and metallic materials on the lamination surfaces is outlined. Reference is made to the cooling of the surfaces of the cooling fluid tank and cooling tubes, as well as the hottest points and temperature transients. Attention is given to heat dissipation in the cooling fluid medium. Finally, calculations of the transient response are made without considering the delay due to the transport of the insulating fluid, and the influence of this in a very high power transformer is noted.

KeyWords:

Bronze; Synthetic seawater; Passivation disruption; Buffering; Deoxygenation

References:

  1. Clem, J.E.: Equivalent Circuits of Regulating Transformers, Trans. AIEE vol. 58, p. 871, 1939.
  2. Dahlander, P. 1998. An engineering tool for film cooling simulations. Thesis for the degree licentiate of engineering 98/10. Department of Thermo and Fluid Dynamics, Chalmers University of Technology, Göteborg, Sweden.
  3. Emanuel E. Pires Vaz; João P. B. Vaz; Hugo F.B.Vaz. Moldes Cunhos e Cortantes, Liv. Lopes da Silva Editora.
  4. Emanuel Eduardo Pires Vaz. Tratamento matemático da elasticidade duma barra homogénea. Gazeta de Matemática. Lisboa nº 133-136, 1975-76.
  5. Emanuel Eduardo Pires Vaz, João Pedro Barbosa Vaz, Hugo Filipe Barbosa Vaz. O problema do arrefecimento no projeto de um transformador elétrico de muito alta potência. QSP,7/8 2017 Portugal. 
  6. Emanuel Eduardo Pires Vaz, João Pedro Barbosa Vaz, Hugo Filipe Barbosa Vaz, Maria Arminda R.B. P. Vaz. O problema do arrefecimento no projeto de um transformador elétrico de muito alta potência – Parte 2. QSP, Nov 2021 Portugal. 
  7. Goldstein, R.J. 1971. Film Cooling. In Advances in Heat Transfer. Irvine, T.F. and. Hartnett Eds. Academic Press. New York 7: 321-379.
  8. Harasgama, S.P. 1995.Aerothermal Aspects of Gas Turbine Flows. VLI-LS 1995-05. Heat Transfer and Cooling in Gas Turbines.
  9. Hennecke, D.K. 1984. Heat Transfer Problems in Aero- Engines. Heat and Mass Transfer in Rotating Machinery, Hemisphere. Washington. 353-379.
  10. Hall, K., Johnson, B., Weigand, B. & J.Richardson. 1995. An Advanced Blade Design for V84.3 Gas Turbines, VDI Berichte, 1185: 257-275.
  11. Kato, M. and Launder, B.E. 1993. The modelling of turbulent flow around stationary and vibrating square cylinders. In Ninth Symposium on Turbulent Shear Flow. Vol. 1: 10-4-1  10-4-6. Kyoto.
  12. Kays, W.M. & M.E. Crawford. 1993. Convective Heat and Mass Transfer. Mc Graw –Hill, Inc., New York.
  13. Leontiev, A.I. 1999. Heat and Mass Transfer Problems for Film Cooling. J. Heat Transfer. 121: 509-527.
  14. Maria Augusta Ferreira Neves. Matemática 12. Porto Editora.
  15. Mochizuki, S.; J. Takamura,S.Yamawaki, W.J.Wang.1992. Heat transfer in serpentine flow passages with rotation.92-GT-190.
  16. Notes on Física Complementar of J.M.M. R. Araújo 1970, UP. 
  17. Rogério S.S.Nunes. Computação de equações diferenciais.1967, CUP.
  18. Schulenberg.T., Kopper, F. & J. Richardson. 1995. An Advanced Blade Design for  V 84.3 Gas Turbines, VDI Berichte, 1185: 257-275.
  19. VKI Lecture Series. 1982. Film Cooling and Turbine Blade Heat Transfer.VKI-LS 82-02.
  20. Yeh, F.C. & F.S. Stepka.1984.Review and Status of Heat- Transfer Technology for Internal Passages of Air-Cooled Turbine Blades. NASA Technical Paper 2232: 1-33.