The Forecasting for Number of Airplane Passengers at International Airport Soekarno Hatta, Jakarta Using Some Time Series Models

Author's Information:

Melka Pratama

Universitas Islam Negeri Sultan Syarif Kasim Riau

Rado Yendra

Universitas Islam Negeri Sultan Syarif Kasim Riau

Ari Pani Desvina

Universitas Islam Negeri Sultan Syarif Kasim Riau

Muhammad Marizal

Universitas Islam Negeri Sultan Syarif Kasim Riau

 

Vol 02 No 01 (2025):Volume 02 Issue 01 January 2025

Page No.: 01-06

Abstract:

Indonesia is a vast country comprising five major islands that serve as the economic centers. Consequently, transportation methods, such as airplanes, are essential for facilitating economic transactions between these islands. The number of airline passengers is a crucial component in fostering the growth of the air transportation industry, which significantly influences the economy between islands. Therefore, it is essential to conduct periodic analyses of passenger numbers. A forecast analysis that predicts the number of airline passengers for the upcoming period will offer valuable insights, enabling the air transportation sector to continue its successful development. This research focuses on forecasting the monthly number of airplane passengers for the upcoming year at Soekarno-Hatta Airport, utilizing passenger data from January 2015 to August 2024. Four distinct time series models will be employed in this analysis: additive decomposition, multiplicative decomposition, Holt-Winters additive, and Holt-Winters multiplicative. The most critical aspect of evaluating the best model involves analyzing the smallest error results from each model, utilizing the Mean Absolute Error (MAE) testing tool for this purpose. The Holt-Winters additive model emerges as the superior choice, while both the decompose additive and decompose multiplicative models were unable to generate data with sufficiently narrow gaps, particularly during the significant decline in passenger numbers caused by the COVID-19 pandemic.

KeyWords:

forecasting, time series, decompose additive, decompose multiplicative, Holt Winters additive, Holt Winters multiplicative

References:

  1. R. Wasono, Y. Fitri and M. A. Haris., “Forecasting the Number Of Airplane Passengers Using Holt Winter's Exponential Smoothing Method And Extreme Learning Machine Method” BAREKENG: J. Math. & App., vol. 18, iss. 1, pp. 0427-0436, March, 2024.
  2. Jafari N and Lewison M (2024) Forecasting air passenger tra_c and market share using deep neural networks with multiple inputs and outputs. Front. Artif. Intell. 7:1429341. doi: 10.3389/frai.2024.1429341
  3. Kim, S., and Shin, H. D. (2016). Forecasting short-term air passenger demand using big data from search engine queries. Autom. Constr. 70, 98–108. doi: 10.1016/j.autcon.2016.06.009
  4. Carmona-Benitez, R. B., Nieto, M. R., and Miranda, D. (2017). An econometric dynamic model to estimate passenger demand for air transport industry. Transp. Res. Proc. 25, 17–29. doi: 10.1016/j.trpro.2017.05.191
  5. Hsiao, C.-Y., and Hansen, M. (2011). A passenger demand model for air transportation in a hub-and-spoke network. Transp. Res. E Logist. Transp. Rev. 47, 1112–1125. doi: 10.1016/j.tre.2011.05.012
  6. Holt, C. C. (2004). Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast. 20, 5–10. doi: 10.1016/j.ijforecast.2003.09.015
  7. Bermudez, J., Segura, J., and Vercher, E. (2007). Holt–winters forecasting: an alternative formulation applied to UK air passenger data. J. Appl. Stat. 34, 1075–1090. doi: 10.1080/02664760701592125
  8. Grubb, H., and Mason, A. (2001). Long lead-time forecasting of UK air passengers by holt–winters methods with damped trend. Int. J. Forecast. 17, 71–82. doi: 10.1016/S0169 2070(00)00053-4
  9. Dantas, T. M., Oliveira, F. L. C., and Repolho, H. M. V. (2017). Air transportation demand forecast through bagging Holt winters methods. J. Air Transp. Manag. 59, 116–123. doi: 10.1016/j.jairtraman.2016.12.006
  10. Wang, Weije and Lu, Yanmin, “Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model,” IOP Conference Series: Materials Science and Engineering, vol. 324, no. 1, 2018. Crossref, http://dx.doi.org/10.1088/1757-899X/324/1/012049 
  11. Rossi, M., &Brunelli, D. (2015, July). Forecasting data centers power consumption with the Holt-Winters method. In Environmental, Energy and Structural Monitoring Systems (EESMS), 2015 IEEE Workshop on (pp.210-214). IEEE.
  12. Rosy,C.P. and Ponnusamy,P, “Evaluating and Forecasting Roomdemand in Tourist Spot Using Holt-Winters Method,” International Journal of Computer Applications, vol. 172, no. 2, pp. 22-25, 2017. Crossref, http://dx.doi.org/10.5120/ijca2017915072
  13. Marizal, M., & Mutiarani, F. (2022). Penerapan Metode Exponential Smoothing Dalam Memprediksi Jumlah Peserta Didik Baru Di SMA Favorit Kota Payakumbuh. Maj. Ilm. Mat. dan Stat, 22(1), 43-49.
  14. Akbarizan, Marizal, M., Soleh, M., Abdi, M., Hertina, A., & Yendra, R., (2016). Utilization of Holt’s Forecasting Model for Zakat Collection in Indonesia.  American Journal of Applied. Science 13: 1342-1346.
  15. Marizal, M., Mansur, A., Hanaish, I. S., Jamaluddin, J., Darussaamin, Z., Kasmuri, K., & Saifullah, S. (2023). Using Holt Winter 2 Variable Modelling to Analyze the Potential Combining Of Zakat Collection In Three Countries In Southeast Asia As One Business Centre. Journal of Applied Engineering and Technological Science (JAETS), 4(2), 655-663.
  16. Pratiwi, W. A., & Marizal, M. (2022). Penerapan Metode Eksponential Smoothing Dalam Memprediksi Hasil Pencapaian Kinerja Pelayanan Perangkat Daerah Dinas Pendidikan Provinsi Riau. Indonesian Council of Premier Statistical Science, 1(1), 4-14.
  17. Ferbar Tratar, L., & Strmčnik, E, “The Comparison of Holt–Winters Method and Multiple Regression Method: A Case Study,” Energy, vol. 109, pp. 266-276, 2016. Crossref, https://doi.org/10.1016/j.energy.2016.04.115 
  18. Ribeibo, Marques, Junior, “Holt-Winters Forecasting for Brazilian Natural Gas Production,” International Journal for Innovation Education and Research, 2019.