Intelligent Traffic Control, Gathering and Monitoring Traffic Data Using CCTV Images

Author's Information:

Luther Kington Nwobodo

Independent Researcher Scotland United Kingdom

Vol 02 No 01 (2025):Volume 02 Issue 01 January 2025

Page No.: 40-51

Abstract:

Although the number of automobiles on the road currently is more than it was a few years ago, the infrastructure of roads and traffic systems has not kept up with this expansion, which makes handling traffic challenging. This mismatch causes hence a lot of traffic congestion, crowding, and pollution. All throughout the globe, handling increasing traffic is a major challenge. Operations depend on traffic management in great part. It has to do with planning, running, and purchasing the necessary transportation services—cars, trucks, railroads, boats—that carry commodities and vehicles. Intelligent Traffic Systems (ITS) might be a fantastic approach to address these types of issues by means of modern technology. Given this, traffic control philosophy has to change to accommodate smart cities—which use computer vision techniques to run an adaptive traffic management system depending on CCTV image stream analytics. The adaptive traffic management system detects and counts vehicles accurately. In smart cities, where traffic lights must be automated based on vehicle density, this technique is particularly helpful. This study investigated intelligent traffic control, gathering and monitoring traffic data through using CCTV images. It embodies possible risks in the implementation state, benefits, challenges, as well as the future prospect of ITS.

KeyWords:

Intelligent traffic control, Gathering and monitoring traffic, data, CCTV images.

References:

  1. Afrin, T, & Yodo, N. (2020). A Survey of Road Traffic Congestion Measures towards a Sustainable and Resilient Transportation System. Sustainability; 12(11): 4660. doi: 10.3390/su12114660
  2. Ahmad, F., Basit, A., Ahmad, H., Mahmud, S. A., Khan, G. M., & Yousaf, F. Z. (2013) Feasibility of deploying wireless sensor based road side solutions for intelligent transportation systems. In: 2013 International Conference on Connected Vehicles and Expo (ICCVE), 320-326
  3. Aleko, D. R, & Djahel, S. (2020). An Efficient Adaptive Traffic Light Control System for Urban Road Traffic Congestion Reduction in Smart Cities. Information.; 11(2): 119. doi: 10.3390/info11020119
  4. Ameer S, Shah MA, Khan A, et al. (2019). Comparative Analysis of Machine Learning Techniques for Predicting Air Quality in Smart Cities. IEEE Access. 2019; 7: 128325-128338. doi: 10.1109/access..2925082
  5. Aouedi, O., Piamrat, K. and Parrein, B., (2022). Intelligent traffic management in next-generation networks. Future internet, 14(2), p.44.
  6. Bahiru TK, Kumar Singh D, Tessfaw EA. (2018). Comparative Study on Data Mining Classification Algorithms for Predicting Road Traffic Accident Severity. In: Proceedings of the 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT); 20-21 April 2018; Coimbatore, India. pp. 1655-1660. doi: 10.1109/icicct.2018.8473265
  7. Bruno, R., & Nurchis, M. (2013) Robust and efficient data collection schemes for vehicular multimedia sensor networks. In: 2013 IEEE 14th International Symposium on" A World of Wireless, Mobile and Multimedia Networks" (WoWMoM), 1-10. IEEE
  8. Butilă E.V., Boboc R.G. (2022). Urban traffic monitoring and analysis using unmanned aerial vehicles (UAVs): A systematic literature review Remote Sens., 14 (3) (2022)
  9. Chakraborty, P, Adu-Gyamfi, YO, Poddar S, et al. (2018). Traffic Congestion Detection from Camera Images using Deep Convolution Neural Networks. Transportation Research Record: Journal of the Transportation Research Board.; 2672(45): 222-231. doi: 10.1177/0361198118777631
  10. Chao, K. H., & Chen, P. Y. (2014) An intelligent traffic flow control system based on radio frequency identification and wireless sensor networks. International journal of distributed sensor networks, 10(5), 694545
  11. Chen Y., Qin R., Zhang G., Albanwan H. (2021). Spatial temporal analysis of traffic patterns during the COVID-19 epidemic by vehicle detection using planet remote-sensing satellite images Remote Sens., 13 (2) 
  12. Chin J, Callaghan V, Lam I. (2017). Understanding and personalising smart city services using machine learning, The Internet-of-Things and Big Data. In: Proceedings of the 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE); 19-21 June; Edinburgh, UK. pp. 2050-2055. doi: 10.1109/isie.2017.8001570
  13. Choi, O., Kim, S., Jeong, J., Lee, H. W., & Chong, S. (2015) Delay-optimal data forwarding in vehicular sensor networks. IEEE transactions on vehicular technology, 65(8), 6389-6402.
  14. de Souza A.M., et al. (2017), Traffic management systems: A classification, review, challenges, and future perspectives. Int. J. Distrib. Sens. Netw., 13 (4) 
  15. Degas, et al. (2022)."A survey on artificial intelligence (ai) and explainable ai in air traffic management: Current trends and development with future research trajectory." Applied Sciences 12, no. 3 (2022): 1295
  16. Dighe, B., Nikam, A., and Markad, K. (2024). Intelligent Traffic Management Systems: A Comprehensive Review. International Journal of Creative Research Thoughts (IJCRT).12, (4)pp912- 917
  17. Fattah, M., Morshed S.R, & Kafy, A.A. (2022). Insights into the socio-economic impacts of traffic congestion in the port and industrial areas of Chittagong city, Bangladesh. Transportation Engineering; 9: 100122. doi: 10.1016/j.treng.2022.100122
  18. Gandhi, Mihir M., Devansh S. Solanki, Rutwij S. Daptardar, and Nirmala Shinde Baloorkar (2020). "Smart control of traffic light using artificial intelligence." In 2020 5th IEEE international conference on recent advances and innovations in engineering (ICRAIE), pp. 1-6. IEEE, 2020.
  19. Hamdi M.M., Rashid L.A.S.A., Al-shareed a M.A. (2020). Techniques of early incident detection and traffic monitoring centre in VANETs: A review. J. Commun., 15 (12), pp. 896-904
  20. Jain N.K., Saini R.K., Mittal P. (2019). A review on traffic monitoring system techniques. Ray K., Sharma T.K., Rawat S., Saini R.K., Bandyopadhyay A. (Eds.), Soft Computing: Theories and Applications, Springer Singapore, Singapore (2019), pp. 569-577
  21. Jain N.K., Saini R.K., Mittal P. (2019). A review on traffic monitoring system techniques. Ray K., Sharma T.K., Rawat S., Saini R.K., Bandyopadhyay A. (Eds.), Soft Computing: Theories and Applications, Springer Singapore, Singapore, pp. 569-577
  22. Katerna, O. (2019). Intelligent transport system: the problem of definition and formation of classification system. Economic analysis, 29 (2), 33-43. DOI: https://doi.org/10.35774/econa2019.02.033
  23. Kleine, D. J, Zalakeviciute R, Gonzalez M, et al. (2017). Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters. Journal of Electrical and Computer Engineering, 1-14. doi: 10.1155/2017/5106045
  24. Mazhar, R. Hojae, S. Awais, A. & Anand, P. (2018). Real-time video processing for traffic control in smart city using Hadoop ecosystem with GPUs. Soft Computing, 22:1533–1544
  25. Mehmood Y., Ahmad F., Yaqoob I., Adnane A., Imran M., Guizani S. (2017). Internet-of-things-based smart cities: Recent advances and challenges. IEEE Commun. Mag., 55 (9), pp. 16-24
  26. Okwu, Modestus O., Vitalian U. Chukwu, and Onyewuchi Oguoma. (2019). "Application of artificial neural network model for cost optimization in a single-source, multi-destination system with non-deterministic inputs." In Advances in Computational Intelligence: 15th International Work-Conference on Artificial Neural Networks, IWANN 2019, Gran Canaria, Spain, June 12-14, 2019, Proceedings, Part II 15, pp. 539-554. Springer International Publishing, 2019
  27. Outay F., Mengash H.A., Adnan M. (2020). Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: Recent advances and challenges Transp. Res. A: Policy Pract., 141, pp. 116-129
  28. Rabby M., Islam M.M. & Imon S.M. (2019). A review of IoT application in a smart traffic management system. 5th International Conference on Advances in Electrical Engineering, ICAEE, pp. 280-285.
  29. Ravish, R. & Swamy, S. R. (2021). Intelligent traffic management: a review of challenges, solutions, and future perspectives. Transport and Telecommunication, 22 (2), 163–182; DOI 10.2478/ttj-2021-0013
  30. Roopa, R. & Shanta, R. (2021). Intelligent traffic management: A review of challenges, solutions, and future perspectives. Transport and Telecommunication, 2021, volume 22, no. 2, 163–182 Transport and Telecommunication Institute, Lomonosova 1, Riga, LV-1019, Latvia DOI 10.2478/ttj-2021-0013
  31. Saqib, M., Lee, C. (2010) Traffic control system using wireless sensor network. In: 2010 The 12th International Conference on Advanced Communication Technology (ICACT), 1, 352-357. IEEE
  32. Shankar, I. L.. (2021): "AI enabled applications towards intelligent transportation." Transportation Engineering 5 100083.
  33. Sharma, A., Yogesh, A., and Sunil, K. (2020). "The role of blockchain, AI and IoT for smart road traffic management system." In 2020 IEEE India Council International Subsections Conference (INDISCON), pp. 289-296. IEEE, 2020
  34. Singh, D.K.,  Sahatiya, P. & Ganatra, A. (2023). Enhancing traffic control systems with live video analytics: Issues, challenges, opportunities, and recent problems. Information System and Smart City 3(1), Pp 1-12
  35. Soman, Renjith, and K. Radhakrishnan (2018). "Traffic Light Control and Violation Detection Using Image Processing." Traffic 8, no. 4.
  36. Srivastava S, Divekar AV, Anilkumar C, et al. (2021). Comparative analysis of deep learning image detection algorithms. Journal of Big Data.; 8(1). doi: 10.1186/s40537-021-00434-w
  37. Sukhadia, A., Khush, U., Meghashree, G., Smit, S. & Manan, S. (2020). Optimization of smart traffic governance system using artificial intelligence. Augmented Human Research 5, 1-14
  38. Uddin, M. et al. (2021). "Ai traffic control system based on deepstream and iot using nvidia jetson nano." In 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), pp. 115-119. IEEE, 2021
  39. Vidya, R., & Amruth, L. (2020). Intelligent Traffic Control System. International Journal of Recent Technology and Engineering. DOI:10.35940/ijrte.f9526.038620
  40. Won M. (2020). Intelligent traffic monitoring systems for vehicle classification: A survey IEEE Access, 8, pp. 73340-73358
  41. Zhou, J., Chen, C.P., Chen, L., & Zhao, W. (2013) A user-customizable urban traffic information collection method based on wireless sensor networks. IEEE Transactions on Intelligent Transportation Systems, 14(3), 1119-1128.