Urban Vegetation as Nature-Based Solutions (NBS) to Mitigate Thermal Stress in Najaf Governorate

Author's Information:

Jaafar Nashid Hameed

Department of Ecology, Faculty of Science, University of Kufa, Najaf, Iraq.

Muthik A. Guda

Department of Ecology, Faculty of Science, University of Kufa, Najaf, Iraq.

Ibtisam Ibrahim Ali

Faculty of Computer Science and Math’s, University of Kufa, Najaf, Iraq.

Nihad Habeeb Mutlag

Department of Ecology, Faculty of Science, University of Kufa, Najaf, Iraq.

Vol 03 No 02 (2026):Volume 03 Issue 02 February 2026

Page No.: 85-93

Abstract:

Urban thermal stress has become one of the most critical environmental challenges facing rapidly expanding cities, particularly in arid and semi-arid regions such as Najaf Governorate, Iraq. Accelerated urbanization, population growth, extensive impervious surfaces, and the decline of green spaces have intensified the urban heat island effect, leading to elevated air and surface temperatures and increased thermal discomfort for urban residents.

Nature-Based Solutions (NBS), especially urban vegetation, represent a sustainable and environmentally friendly approach to mitigating urban thermal stress. Urban plants, including street trees, public parks, green belts, and urban gardens, play a vital role in regulating the urban microclimate through shading, evapotranspiration, reduction of solar radiation absorption, and improvement of surface thermal properties. These processes collectively contribute to lowering ambient temperatures, enhancing thermal comfort, and reducing energy demand for cooling in urban areas.

This study aims to evaluate the effectiveness of urban vegetation as a nature-based solution for mitigating thermal stress in Najaf Governorate. The research focuses on analyzing the relationship between vegetation cover distribution and urban temperature patterns, considering land-use characteristics and urban morphology. Particular attention is given to the selection of plant species suitable for the local climatic conditions of Najaf, emphasizing native and drought-tolerant species that can withstand high temperatures, water scarcity, and harsh environmental conditions.

The significance of this research lies in its contribution to sustainable urban planning and climate adaptation strategies in Najaf Governorate. By integrating urban vegetation into urban planning policies, cities can enhance environmental resilience, improve public health, and promote long-term ecological sustainability. The findings are expected to support decision-makers and urban planners in adopting nature-based solutions as a cost-effective and adaptive strategy to reduce thermal stress and improve the livability of cities under ongoing climate change.

KeyWords:

Urban vegetation, Nature-Based Solutions, thermal stress, urban heat island, Najaf Governorate, sustainable urban planning

References:

  1. Pugliese Viloria, A. D. J., & Brovelli, M. A. (2025). Simulating the effect of Nature‑based Solutions as a mitigation tool for Urban Heat Islands. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII‑G, 1229–1235. 
  2. Wei, H., Bai, X., & Han, Y. (2025). Urban cooling and energy‑saving effects of nature‑based solutions across types and scales. Nat. Cities, (2025). 
  3. Bowler, D. E., Buyung‑Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool cities: A systematic review of the empirical evidence. Urban for. Urban Green., 9(3), 249–261.
  4. Norton, B. A., Coutts, A. M., Livesley, S. J., Harris, R. J., Hunter, A. M., & Williams, N. S. G. (2015). Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan., 134, 127–138.
  5. Livesley, S. J., McPherson, E. G., & Calfapietra, C. (2016). The urban forest and ecosystem services: Impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. J. Environ. Qual., 45(1), 119–124.
  6. Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc., 93(12), 1879–1900.
  7. Santamouris, M. (2015). Regulating the damaged thermostat: Strategies for urban heat island mitigation. Energy Build., 91, 43–56.
  8. Gill, S. E., Handley, J. F., Ennos, A. R., & Pauleit, S. (2007). Adapting cities for climate change: The role of the green infrastructure. Built Environ., 33(1), 115–133.
  9. Demuzere, M., et al. (2014). Mitigating and adapting to climate change: Multi‑functional and multi‑scale assessment of green infrastructure. Cities, 36, 18–29.
  10. Jia, S., Weng, Q., & Wang, Y. (2026). The potential of nature‑based solutions in urban heat mitigation and building energy savings. In: Nature‑Based Solutions in Urban Environments (pp. 157–176). Taylor & Francis. 
  11. Zhou, D., Zhao, S., & Liu, S. (2017). Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Sci. Total Environ., 578, 121–133.
  12. Haddad, S., Zhang, W., Paolini, R., et al. (2024). Quantifying the energy impact of heat mitigation technologies at the urban scale. Nat. Cities, 1, 62–72. 
  13. Akbari, H., & Kolokotsa, D. (2016). Three decades of urban heat island and mitigation research. Energy Build., 133, 834–842.
  14. Oke, T. R. (1982). The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc., 108(455), 1–24.
  15. Wang, Z.-H., & Akbari, H. (2016). Recent advancements in cool roofs and pavements to mitigate urban heat island effects in cities. Build. Environ., 110, 1–13.
  16. Santamouris, M. (2013). Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. Renew. Sustain. Energy Rev., 26, 224–240.
  17. Shirazi, M., Mahdavinejad, M., & Sharifzadeh, M. (2018). Evaluation of microclimate responses to urban greenery in arid cities. Urban Clim., 25, 16–29.
  18. Mannucci, M., et al. (2023). Urban tree canopy and its cooling effect in Mediterranean climates. Landsc. Urban Plan., 231, 104639.
  19. Norton, B. A., Coutts, A. M., & Livesley, S. J. (2019). Shading and evapotranspiration: Combined cooling effects of street trees and green infrastructure. J. Appl. Meteorol. Climatol., 58(5), 1017–1035. 
  20. Zhang, Y., et al. (2024). Vegetation influence on air quality in urban environments. Environ. Pollut., 311, 121433.
  21. El‑Beltagy, A., et al. (2023). Dust reduction by urban vegetation in dry climates. Atmos. Environ., 285, 119160.
  22. Ramírez, O., et al. (2019). Vegetative barriers for dust control in arid cities. J. Arid Environ., 170, 104027.
  23. Kowarik, I. (2011). Novel urban ecosystems, biodiversity, and ecological functions. Landsc. Urban Plan., 100(4), 347–351.
  24. Ulrich, R. S. (1984). View through a window may influence recovery from surgery. Science, 224(4647), 420–421.
  25. Maas, J., et al. (2006). Green space, urbanity, and health: How strong is the relation? J. Epidemiol. Community Health, 60(7), 587–592.
  26. Sailor, D. J. (1995). Simulated urban climate response to modifications in surface albedo and vegetation. Atmos. Environ., 29(20), 737–752.
  27. Local case study or municipal planning document from Najaf Governorate (2023–2025) on urban greenery strategies.
  28. Gupta, R., & Gregg, M. (2017). Green infrastructure and thermal comfort: Comparative performance of different strategies. Landsc. Urban Plan., 165, 162–173. https://doi.org/10.1016/j.landurbplan.2017.04.005
  29. IPCC (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the IPCC. Cambridge University Press.
  30. Nesshöver, C., et al. (2017). The science, policy and practice of nature‑based solutions: An interdisciplinary perspective. Sci. Total Environ., 579, 1215–1227. https://doi.org/10.1016/j.scitotenv.2016.11.106
  31. Raymond, C. M., et al. (2017). An impact evaluation framework to support planning and evaluation of nature‑based solutions projects. J. Environ. Manage., 196, 29–38. https://doi.org/10.1016/j.jenvman.2017.03.058
  32. Eggermont, H., et al. (2015). Nature‑based solutions: New influence for environmental management and research in Europe. GAIA, 24(4), 243–248.
  33. Cohen‑Shacham, E., et al. (2019). Nature‑based solutions to address global societal challenges. IUCN, Gland, Switzerland.
  34. Raymond, C. M., et al. (2020). A framework for understanding and implementing NBS in cities. Urban Ecosyst., 23, 799–820. https://doi.org/10.1007/s11252‑020‑00977‑8
  35. Nesshöver, C., et al. (2022). Operationalizing NBS for city resilience and sustainability. Front. Sustain. Cities, 4, 837827. https://doi.org/10.3389/frsc.2022.837827
  36. Kabisch, N., Korn, H., Stadler, J., & Bonn, A. (Eds.). (2017). Nature‑Based Solutions to Climate Change Adaptation in Urban Areas. Springer.
  37. Demuzere, M., et al. (2014). Mitigating and adapting to climate change: Multi‑functional and multi‑scale assessment of green infrastructure. Cities, 36, 18–29. https://doi.org/10.1016/j.cities.2013.11.003
  38. Pauleit, S., et al. (2019). Advancing urban green infrastructure planning and implementation in Europe. Urban for. Urban Green., 40, 4–11. https://doi.org/10.1016/j.ufug.2018.07.019
  39. Raymond, C. M., et al. (2021). Integrating nature‑based solutions into forest landscape restoration. J. Environ. Plan. Manage., 64(13), 2396–2416. https://doi.org/10.1080/09640568.2020.1807055
  40. Livesley, S. J., McPherson, E. G., & Calfapietra, C. (2016). The urban forest and ecosystem services: Impacts on urban water, heat, and pollution cycles. J. Environ. Qual., 45(1), 119–124. https://doi.org/10.2134/jeq2015.10.0482
  41. Norton, B. A., et al. (2019). Shading and evapotranspiration: Combined cooling effects of street trees. J. Appl. Meteorol. Climatol., 58(5), 1017–1035. https://doi.org/10.1175/JAMC‑D‑18‑0148.1
  42. Escobedo, F. J., et al. (2011). Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environ. Pollut., 159(8–9), 2078–2087. https://doi.org/10.1016/j.envpol.2011.01.010
  43. Bowler, D. E., et al. (2010). Urban greening to cool cities: A systematic review. Urban For. Urban Green., 9(3), 249–261.
  44. Gillner, S., et al. (2017). Role of street trees in urban cooling and microclimate regulation. Landsc. Urban Plan., 158, 119–129. https://doi.org/10.1016/j.landurbplan.2016.09.007
  45. Shashua‑Bar, L., & Hoffman, M. E. (2000). Vegetation as a climatic component in the design of an urban street. Urban For. Urban Green., 1(3), 149–157. https://doi.org/10.1078/1618‑8667‑00015
  46. Stovin, V., et al. (2013). Urban green roofs: Hydrological and morphological considerations. Prog. Phys. Geogr., 37(2), 207–218. https://doi.org/10.1177/0309133313478631
  47. Speak, A. F., et al. (2012). Urban particulate pollution reduction by green roofs. Environ. Pollut., 186, 39–49. https://doi.org/10.1016/j.envpol.2013.11.010
  48. Rowe, D. B. (2011). Green roofs as a means of pollution abatement. Environ. Pollut., 159(8–9), 2100–2110. https://doi.org/10.1016/j.envpol.2011.01.008
  49. Gill, S. E., et al. (2007). Adapting cities for climate change: The role of green infrastructure. Built Environ., 33(1), 115–133.
  50. Kotze, D., et al. (2011). Urban greenbelt vegetation and biodiversity functions. Urban Ecosyst., 14, 17–39. https://doi.org/10.1007/s11252‑010‑0143‑8
  51. Namekata, T., et al. (2025). Benefits of urban greenery beyond thermal regulation: A systematic review. Clim. Risk Manag., 50, 100524. https://doi.org/10.1016/j.crm.2024.100524
  52. Zhang, Y., et al. (2024). Vegetation influence on urban air quality: A comprehensive review. Environ. Pollut., 311, 121433. https://doi.org/10.1016/j.envpol.2023.121433
  53. El‑Beltagy, A., et al. (2023). Dust suppression performance of urban vegetation in dry climates. Atmos. Environ., 285, 119160. https://doi.org/10.1016/j.atmosenv.2022.119160
  54. Ramírez, O., et al. (2019). Vegetative barriers and dust control in arid urban areas. J. Arid Environ., 170, 104027. https://doi.org/10.1016/j.jaridenv.2019.104027
  55. Kowarik, I. (2011). Novel urban ecosystems, biodiversity, and ecological functions. Landsc. Urban Plan., 100(4), 347–351. https://doi.org/10.1016/j.landurbplan.2011.02.022
  56. Ulrich, R. S. (1984). View through a window may influence recovery from surgery. Science, 224(4647), 420–421. https://doi.org/10.1126/science.6143402
  57. Maas, J., et al. (2006). Green space, urbanity, and health: How strong is the relation? J. Epidemiol. Community Health, 60(7), 587–592. https://doi.org/10.1136/jech.2005.043125
  58. Sailor, D. J. (1995). Simulated urban climate response to vegetation and albedo changes. Atmos. Environ., 29(20), 737–752. https://doi.org/10.1016/1352‑2310(94)00205‑N
  59. Municipal Urban Greening Plan, Najaf Governorate (2024). Najaf Urban Green Strategy Report. Najaf Gov. Planning Office.
  60. Al‑Yami, A. S., et al. (2021). Green infrastructure and heat mitigation in Riyadh. Urban Clim., 38, 100906. https://doi.org/10.1016/j.uclim.2021.100906
  61. Al‑Ansari, N., et al. (2022). Cooling effects of urban parks in Doha, Qatar. Urban For. Urban Green., 69, 127475. https://doi.org/10.1016/j.ufug.2022.127475
  62. Rahmati, O., et al. (2017). Urban forests and microclimate mitigation in Tehran. Urban For. Urban Green., 23, 64–75. https://doi.org/10.1016/j.ufug.2017.02.008
  63. Al‑Hamad, A. M., & Al‑Azawi, M. M. (2020). Integration of xerophytic green belts in arid cities: A case from Saudi Arabia. Sustainability, 12(15), 6149. https://doi.org/10.3390/su12156149
  64. El‑Zein, A., et al. (2023). Urban greenery networks and connectivity in arid cities. J. Urban Plan. Dev., 149(4), 04023038. https://doi.org/10.1061/(ASCE)UP.1943‑5444.0000838
  65. Petticrew, M., & Roberts, H. (2006). Systematic Reviews in the Social Sciences: A Practical Guide. Blackwell.
  66. Moher, D., et al. (2009). Preferred reporting items for systematic reviews and meta‑analyses: The PRISMA statement. PLoS Med., 6(7), e1000097.
  67. Weng, Q. (2012). Remote sensing of urban heat islands: Thermal remote sensing and GIS analysis. Remote Sens. Environ., 117, 162–170.
  68. Solecki, W. D., et al. (2017). Urban adaptation assessment framework: Integrating socio‑economic dimensions. Sustain. Cities Soc., 32, 114–124.
  69. Elmqvist, T., et al. (2015). Urbanization, biodiversity and ecosystem services: Challenges and opportunities. Springer.
  70. Beatley, T. (2011). Biophilic Cities: Integrating Nature into Urban Design and Planning. Island Press.
  71. UN Habitat (2020). Global Urban Indicators Database. United Nations Human Settlements Programme.
  72. European Commission (2021). Nature‑Based Solutions for Urban Sustainability. EC Directorate‑General for Environment.
  73. Kabisch, N., et al. (2016). Urban green spaces and health equity. BMC Public Health, 16, 1235.
  74. McDonald, R. I., & Marcotullio, P. J. (2011). Global urbanization and environmental change: Regional differences and policy responses. Curr. Opin. Environ. Sustain., 3(3), 139–144.
  75. Cohen‑Shacham, E., et al. (2020). Mainstreaming NBS in policy and practice: Lessons and prospects. Environ. Sci. Policy, 112, 108–116.
  76. Kabisch, N., et al. (2018). Nature‑based solutions to climate change mitigation and adaptation in urban areas: Linkages between science, policy and practice. Springer.