Urban Vegetation as Nature-Based Solutions (NBS) to Mitigate Thermal Stress in Najaf Governorate
Abstract:
Urban thermal stress has become one of the most critical environmental challenges facing rapidly expanding cities, particularly in arid and semi-arid regions such as Najaf Governorate, Iraq. Accelerated urbanization, population growth, extensive impervious surfaces, and the decline of green spaces have intensified the urban heat island effect, leading to elevated air and surface temperatures and increased thermal discomfort for urban residents.
Nature-Based Solutions (NBS), especially urban vegetation, represent a sustainable and environmentally friendly approach to mitigating urban thermal stress. Urban plants, including street trees, public parks, green belts, and urban gardens, play a vital role in regulating the urban microclimate through shading, evapotranspiration, reduction of solar radiation absorption, and improvement of surface thermal properties. These processes collectively contribute to lowering ambient temperatures, enhancing thermal comfort, and reducing energy demand for cooling in urban areas.
This study aims to evaluate the effectiveness of urban vegetation as a nature-based solution for mitigating thermal stress in Najaf Governorate. The research focuses on analyzing the relationship between vegetation cover distribution and urban temperature patterns, considering land-use characteristics and urban morphology. Particular attention is given to the selection of plant species suitable for the local climatic conditions of Najaf, emphasizing native and drought-tolerant species that can withstand high temperatures, water scarcity, and harsh environmental conditions.
The significance of this research lies in its contribution to sustainable urban planning and climate adaptation strategies in Najaf Governorate. By integrating urban vegetation into urban planning policies, cities can enhance environmental resilience, improve public health, and promote long-term ecological sustainability. The findings are expected to support decision-makers and urban planners in adopting nature-based solutions as a cost-effective and adaptive strategy to reduce thermal stress and improve the livability of cities under ongoing climate change.
KeyWords:
Urban vegetation, Nature-Based Solutions, thermal stress, urban heat island, Najaf Governorate, sustainable urban planning
References:
- Pugliese Viloria, A. D. J., & Brovelli, M. A. (2025). Simulating the effect of Nature‑based Solutions as a mitigation tool for Urban Heat Islands. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII‑G, 1229–1235.
- Wei, H., Bai, X., & Han, Y. (2025). Urban cooling and energy‑saving effects of nature‑based solutions across types and scales. Nat. Cities, (2025).
- Bowler, D. E., Buyung‑Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool cities: A systematic review of the empirical evidence. Urban for. Urban Green., 9(3), 249–261.
- Norton, B. A., Coutts, A. M., Livesley, S. J., Harris, R. J., Hunter, A. M., & Williams, N. S. G. (2015). Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan., 134, 127–138.
- Livesley, S. J., McPherson, E. G., & Calfapietra, C. (2016). The urban forest and ecosystem services: Impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. J. Environ. Qual., 45(1), 119–124.
- Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc., 93(12), 1879–1900.
- Santamouris, M. (2015). Regulating the damaged thermostat: Strategies for urban heat island mitigation. Energy Build., 91, 43–56.
- Gill, S. E., Handley, J. F., Ennos, A. R., & Pauleit, S. (2007). Adapting cities for climate change: The role of the green infrastructure. Built Environ., 33(1), 115–133.
- Demuzere, M., et al. (2014). Mitigating and adapting to climate change: Multi‑functional and multi‑scale assessment of green infrastructure. Cities, 36, 18–29.
- Jia, S., Weng, Q., & Wang, Y. (2026). The potential of nature‑based solutions in urban heat mitigation and building energy savings. In: Nature‑Based Solutions in Urban Environments (pp. 157–176). Taylor & Francis.
- Zhou, D., Zhao, S., & Liu, S. (2017). Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Sci. Total Environ., 578, 121–133.
- Haddad, S., Zhang, W., Paolini, R., et al. (2024). Quantifying the energy impact of heat mitigation technologies at the urban scale. Nat. Cities, 1, 62–72.
- Akbari, H., & Kolokotsa, D. (2016). Three decades of urban heat island and mitigation research. Energy Build., 133, 834–842.
- Oke, T. R. (1982). The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc., 108(455), 1–24.
- Wang, Z.-H., & Akbari, H. (2016). Recent advancements in cool roofs and pavements to mitigate urban heat island effects in cities. Build. Environ., 110, 1–13.
- Santamouris, M. (2013). Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. Renew. Sustain. Energy Rev., 26, 224–240.
- Shirazi, M., Mahdavinejad, M., & Sharifzadeh, M. (2018). Evaluation of microclimate responses to urban greenery in arid cities. Urban Clim., 25, 16–29.
- Mannucci, M., et al. (2023). Urban tree canopy and its cooling effect in Mediterranean climates. Landsc. Urban Plan., 231, 104639.
- Norton, B. A., Coutts, A. M., & Livesley, S. J. (2019). Shading and evapotranspiration: Combined cooling effects of street trees and green infrastructure. J. Appl. Meteorol. Climatol., 58(5), 1017–1035.
- Zhang, Y., et al. (2024). Vegetation influence on air quality in urban environments. Environ. Pollut., 311, 121433.
- El‑Beltagy, A., et al. (2023). Dust reduction by urban vegetation in dry climates. Atmos. Environ., 285, 119160.
- Ramírez, O., et al. (2019). Vegetative barriers for dust control in arid cities. J. Arid Environ., 170, 104027.
- Kowarik, I. (2011). Novel urban ecosystems, biodiversity, and ecological functions. Landsc. Urban Plan., 100(4), 347–351.
- Ulrich, R. S. (1984). View through a window may influence recovery from surgery. Science, 224(4647), 420–421.
- Maas, J., et al. (2006). Green space, urbanity, and health: How strong is the relation? J. Epidemiol. Community Health, 60(7), 587–592.
- Sailor, D. J. (1995). Simulated urban climate response to modifications in surface albedo and vegetation. Atmos. Environ., 29(20), 737–752.
- Local case study or municipal planning document from Najaf Governorate (2023–2025) on urban greenery strategies.
- Gupta, R., & Gregg, M. (2017). Green infrastructure and thermal comfort: Comparative performance of different strategies. Landsc. Urban Plan., 165, 162–173. https://doi.org/10.1016/j.landurbplan.2017.04.005
- IPCC (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the IPCC. Cambridge University Press.
- Nesshöver, C., et al. (2017). The science, policy and practice of nature‑based solutions: An interdisciplinary perspective. Sci. Total Environ., 579, 1215–1227. https://doi.org/10.1016/j.scitotenv.2016.11.106
- Raymond, C. M., et al. (2017). An impact evaluation framework to support planning and evaluation of nature‑based solutions projects. J. Environ. Manage., 196, 29–38. https://doi.org/10.1016/j.jenvman.2017.03.058
- Eggermont, H., et al. (2015). Nature‑based solutions: New influence for environmental management and research in Europe. GAIA, 24(4), 243–248.
- Cohen‑Shacham, E., et al. (2019). Nature‑based solutions to address global societal challenges. IUCN, Gland, Switzerland.
- Raymond, C. M., et al. (2020). A framework for understanding and implementing NBS in cities. Urban Ecosyst., 23, 799–820. https://doi.org/10.1007/s11252‑020‑00977‑8
- Nesshöver, C., et al. (2022). Operationalizing NBS for city resilience and sustainability. Front. Sustain. Cities, 4, 837827. https://doi.org/10.3389/frsc.2022.837827
- Kabisch, N., Korn, H., Stadler, J., & Bonn, A. (Eds.). (2017). Nature‑Based Solutions to Climate Change Adaptation in Urban Areas. Springer.
- Demuzere, M., et al. (2014). Mitigating and adapting to climate change: Multi‑functional and multi‑scale assessment of green infrastructure. Cities, 36, 18–29. https://doi.org/10.1016/j.cities.2013.11.003
- Pauleit, S., et al. (2019). Advancing urban green infrastructure planning and implementation in Europe. Urban for. Urban Green., 40, 4–11. https://doi.org/10.1016/j.ufug.2018.07.019
- Raymond, C. M., et al. (2021). Integrating nature‑based solutions into forest landscape restoration. J. Environ. Plan. Manage., 64(13), 2396–2416. https://doi.org/10.1080/09640568.2020.1807055
- Livesley, S. J., McPherson, E. G., & Calfapietra, C. (2016). The urban forest and ecosystem services: Impacts on urban water, heat, and pollution cycles. J. Environ. Qual., 45(1), 119–124. https://doi.org/10.2134/jeq2015.10.0482
- Norton, B. A., et al. (2019). Shading and evapotranspiration: Combined cooling effects of street trees. J. Appl. Meteorol. Climatol., 58(5), 1017–1035. https://doi.org/10.1175/JAMC‑D‑18‑0148.1
- Escobedo, F. J., et al. (2011). Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environ. Pollut., 159(8–9), 2078–2087. https://doi.org/10.1016/j.envpol.2011.01.010
- Bowler, D. E., et al. (2010). Urban greening to cool cities: A systematic review. Urban For. Urban Green., 9(3), 249–261.
- Gillner, S., et al. (2017). Role of street trees in urban cooling and microclimate regulation. Landsc. Urban Plan., 158, 119–129. https://doi.org/10.1016/j.landurbplan.2016.09.007
- Shashua‑Bar, L., & Hoffman, M. E. (2000). Vegetation as a climatic component in the design of an urban street. Urban For. Urban Green., 1(3), 149–157. https://doi.org/10.1078/1618‑8667‑00015
- Stovin, V., et al. (2013). Urban green roofs: Hydrological and morphological considerations. Prog. Phys. Geogr., 37(2), 207–218. https://doi.org/10.1177/0309133313478631
- Speak, A. F., et al. (2012). Urban particulate pollution reduction by green roofs. Environ. Pollut., 186, 39–49. https://doi.org/10.1016/j.envpol.2013.11.010
- Rowe, D. B. (2011). Green roofs as a means of pollution abatement. Environ. Pollut., 159(8–9), 2100–2110. https://doi.org/10.1016/j.envpol.2011.01.008
- Gill, S. E., et al. (2007). Adapting cities for climate change: The role of green infrastructure. Built Environ., 33(1), 115–133.
- Kotze, D., et al. (2011). Urban greenbelt vegetation and biodiversity functions. Urban Ecosyst., 14, 17–39. https://doi.org/10.1007/s11252‑010‑0143‑8
- Namekata, T., et al. (2025). Benefits of urban greenery beyond thermal regulation: A systematic review. Clim. Risk Manag., 50, 100524. https://doi.org/10.1016/j.crm.2024.100524
- Zhang, Y., et al. (2024). Vegetation influence on urban air quality: A comprehensive review. Environ. Pollut., 311, 121433. https://doi.org/10.1016/j.envpol.2023.121433
- El‑Beltagy, A., et al. (2023). Dust suppression performance of urban vegetation in dry climates. Atmos. Environ., 285, 119160. https://doi.org/10.1016/j.atmosenv.2022.119160
- Ramírez, O., et al. (2019). Vegetative barriers and dust control in arid urban areas. J. Arid Environ., 170, 104027. https://doi.org/10.1016/j.jaridenv.2019.104027
- Kowarik, I. (2011). Novel urban ecosystems, biodiversity, and ecological functions. Landsc. Urban Plan., 100(4), 347–351. https://doi.org/10.1016/j.landurbplan.2011.02.022
- Ulrich, R. S. (1984). View through a window may influence recovery from surgery. Science, 224(4647), 420–421. https://doi.org/10.1126/science.6143402
- Maas, J., et al. (2006). Green space, urbanity, and health: How strong is the relation? J. Epidemiol. Community Health, 60(7), 587–592. https://doi.org/10.1136/jech.2005.043125
- Sailor, D. J. (1995). Simulated urban climate response to vegetation and albedo changes. Atmos. Environ., 29(20), 737–752. https://doi.org/10.1016/1352‑2310(94)00205‑N
- Municipal Urban Greening Plan, Najaf Governorate (2024). Najaf Urban Green Strategy Report. Najaf Gov. Planning Office.
- Al‑Yami, A. S., et al. (2021). Green infrastructure and heat mitigation in Riyadh. Urban Clim., 38, 100906. https://doi.org/10.1016/j.uclim.2021.100906
- Al‑Ansari, N., et al. (2022). Cooling effects of urban parks in Doha, Qatar. Urban For. Urban Green., 69, 127475. https://doi.org/10.1016/j.ufug.2022.127475
- Rahmati, O., et al. (2017). Urban forests and microclimate mitigation in Tehran. Urban For. Urban Green., 23, 64–75. https://doi.org/10.1016/j.ufug.2017.02.008
- Al‑Hamad, A. M., & Al‑Azawi, M. M. (2020). Integration of xerophytic green belts in arid cities: A case from Saudi Arabia. Sustainability, 12(15), 6149. https://doi.org/10.3390/su12156149
- El‑Zein, A., et al. (2023). Urban greenery networks and connectivity in arid cities. J. Urban Plan. Dev., 149(4), 04023038. https://doi.org/10.1061/(ASCE)UP.1943‑5444.0000838
- Petticrew, M., & Roberts, H. (2006). Systematic Reviews in the Social Sciences: A Practical Guide. Blackwell.
- Moher, D., et al. (2009). Preferred reporting items for systematic reviews and meta‑analyses: The PRISMA statement. PLoS Med., 6(7), e1000097.
- Weng, Q. (2012). Remote sensing of urban heat islands: Thermal remote sensing and GIS analysis. Remote Sens. Environ., 117, 162–170.
- Solecki, W. D., et al. (2017). Urban adaptation assessment framework: Integrating socio‑economic dimensions. Sustain. Cities Soc., 32, 114–124.
- Elmqvist, T., et al. (2015). Urbanization, biodiversity and ecosystem services: Challenges and opportunities. Springer.
- Beatley, T. (2011). Biophilic Cities: Integrating Nature into Urban Design and Planning. Island Press.
- UN Habitat (2020). Global Urban Indicators Database. United Nations Human Settlements Programme.
- European Commission (2021). Nature‑Based Solutions for Urban Sustainability. EC Directorate‑General for Environment.
- Kabisch, N., et al. (2016). Urban green spaces and health equity. BMC Public Health, 16, 1235.
- McDonald, R. I., & Marcotullio, P. J. (2011). Global urbanization and environmental change: Regional differences and policy responses. Curr. Opin. Environ. Sustain., 3(3), 139–144.
- Cohen‑Shacham, E., et al. (2020). Mainstreaming NBS in policy and practice: Lessons and prospects. Environ. Sci. Policy, 112, 108–116.
- Kabisch, N., et al. (2018). Nature‑based solutions to climate change mitigation and adaptation in urban areas: Linkages between science, policy and practice. Springer.